
Lecture 17:
Dynamic Analysis and
Testing 3

CS 5150, Spring 2025

1

Administrative Reminders

• Sample Questions (for in-class exams) are available on Canvas.
Solutions will be shared early next week.

• Teams with external client: Remind your client to submit scores right
after meeting/presentation.
• Course staff will not send any reminders.

2

Lecture goals

• Leverage continuous integration to boost productivity by
"shifting left"

• Leverage dynamic analysis tools to find bugs

3

Continuous integration ("CI")

• Build and test whole systems regularly
• Discover issues earlier

• Reduce integration pain through automation and isolation of issues

• Test beyond single developer's resources

• Eliminate reliance on developers' discipline

• Continuously monitor readiness of code

• Applies to both development and release
• Continuous Build + test

• Continuous Delivery

4

CI/CD Terms

• Continuous Build (CB) integrates the latest code changes at head and runs
an automated build and test.

• Continuous Delivery (CD): a continuous assembling of release candidates,
followed by the promotion and testing of those candidates throughout a
series of environments—sometimes reaching production and sometimes
not.

• Release candidate (RC): A cohesive, deployable unit created by an
automated process, assembled of code, configuration, and other
dependencies that have passed the continuous build.

5

Read how Google manages CI: https://xgwang.me/google-ci

https://xgwang.me/google-ci

CI Decisions

• How to compose systems along release workflow

• Which tests to run when along release workflow

• Typical setup
• Pre-submit test suite gates all merges

• Compilation and fast tests relevant to affected code

• Post-submit test suite verifies subset of commits on trunk
• Contains larger, more integrated tests

• Blesses commits that pass as "green"

• Release promotion pipeline verifies candidates for release
• Contains even larger tests, and may require dedicated resources

• Mid-air Collision: Two changes touching different files causing a test to fail

6

Shift left

Heavyweight Lightweight

Requirements
System
design

Acceptance
& release

Program
development

Ops &
maintenance

7

Advantages of Lightweight: Fast Feedback Loops!

Poll: pre-submit vs. post-submit tests

PollEv.com/cs5150sp25

8

Automation, speed, & infrastructure

• Builds, tests, and deployment must be automated and reliable
• Ideally completely reproducible

• Most steps must be fast to avoid impeding productivity
• Cache build products
• Skip unaffected tests
• Parallelize & invest in compute resources

• Benefits from tooling
• Integration with version control and code review

• Pre-merge and pre-release gates
• "Last-known-good" branch (new work should branch from here, not trunk)

• Bisect breakages
• Log all results
• Automatically rerun flaky tests

9

Multi-system CI

• Without monorepo, need to assemble system from several
asynchronously-versioned repositories

• Large integration tests can't check every revision/combination

• Objective: identify "configurations" (revision combinations) suitable
for promotion (larger-scale testing, release)

10

Dynamic analysis

Common dynamic analysis tools

• Coverage

• Debuggers

• Memory checkers

• Sanitizers

• Profilers

Fuzz testing

• Give program random input, look for crashes, assertion violations

• Increased in popularity in 2010s; very effective at finding security
vulnerabilities

• Can be enhanced with coverage feedback
• Use genetic algorithms, neural networks to construct input that exercises

particular branches

What is a performance bug?

Avoid premature optimization!

• Does not meet deadlines / satisfy SLA

• Responsiveness, smoothness do not meet requirements
• 100 ms: GUI
• 15-30 ms: Animation (30-60 fps)
• 10 ms: MIDI, VR

• Unexpected slowdown for certain inputs / DoS vulnerability

• Performance regression (gradual and acute degradation)

• Performance variability across platforms

• Sub-optimal throughput for HPC

Performance testing challenges

• How much room for improvement is there?
• Amdahl's law: Limits to speedup from parallelization, local optimization

• Roofline analysis: Do you expect to be limited by bandwidth or compute?

• Is slowdown localized, dispersed, or emergent?

• Getting reliable measurements is difficult
• Inconsistency, load dependency, JIT compilation, non-representative datasets,

intrusive tooling

• Average case vs. worst case, tail metrics

• Tension between latency and bandwidth

Latency vs. throughput

• Latency: Duration between a single trigger and the system's response
• "Tail latency" (e.g., 95th percentile under a specified load) is more important

than average

• Throughput: Time it takes to process a fixed amount of work
• Often a function of workload

• Typically throughput increases with workload size up to a saturation point

• Reduce overhead with batching
• Typically at expense of latency

Amdahl's Law

• Speedup: S = T_before / T_after

• Identify portion p of runtime cost amenable to optimization
• T_before = p*T + (1 - p)*T

• Let s be speedup of optimization on this portion
• Example: s = 10 for parallelizing on a 10-core machine

• Often interested in limit as s → ∞

• T_after = p*T/s + (1 - p)*T

• S(s) = 1/(1 - p + p/s)

• S → 1/(1 - p)

Amdahl's Law implications

CC BY-SA Daniels220 @ English Wikipedia

Poll: PollEv.com/cs5150sp25

You use a text search application to look for all occurrences of a
keyword in all the files of a large source code repository.

Using a single core, half of the time is spent reading files and looking
for the keyword, and half the time is spent formatting and printing a

sorted summary of the results to the console.

What is the maximum speedup that could be achieved by distributing
the embarrassingly parallel work across multiple cores/nodes?

Profiling

• How can we estimate p?

• Where should our optimization
efforts be focused?

• Profiling techniques
• Sampling: Periodically interrupt

process and examine stack trace
• Low overhead
• Incomplete data

• Tracing: Record whenever a
function is called or returns
• High overhead
• Complete function counts
• Timing may be distorted

• Instruction-level: Estimate cost of
each statement
• Requires CPU model

callgrind/kcachegrind:
tracing & instruction-level

Flame graphs

https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

Browser profilers

Monitoring

• To detect degradation and catch regressions, need to log and monitor
performance metrics
• Can measure duration of tests in CI, but benefits from unloaded servers

• For services, also need to monitor performance in production
• Network conditions, load are dynamic

• With scalable microservice architectures, counterintuitive bottlenecks may
appear
• Scaling the wrong components can remove beneficial backpressure

Soak testing

• Tests often execute for less time than a production system
• Many production systems never turn off (e.g., embedded controllers)

• Some defects (e.g. memory leaks, fragmentation) are innocuous for short
runs

• Soak testing: Subject system to significant load for extended period of
time (days, months, years)
• Be sure to log key performance metrics (cycle time, memory usage)

• Not particularly compatible with a rapid CI pipeline
• Still good to run periodically to catch issues sooner

	Slide 1: Lecture 17: Dynamic Analysis and Testing 3
	Slide 2: Administrative Reminders
	Slide 3: Lecture goals
	Slide 4: Continuous integration ("CI")
	Slide 5: CI/CD Terms
	Slide 6: CI Decisions
	Slide 7: Shift left
	Slide 8: Poll: pre-submit vs. post-submit tests
	Slide 9: Automation, speed, & infrastructure
	Slide 10: Multi-system CI
	Slide 11: Dynamic analysis
	Slide 12: Common dynamic analysis tools
	Slide 14: Fuzz testing
	Slide 15: What is a performance bug?
	Slide 17: Performance testing challenges
	Slide 18: Latency vs. throughput
	Slide 20: Amdahl's Law
	Slide 21: Amdahl's Law implications
	Slide 22: Poll: PollEv.com/cs5150sp25
	Slide 23: Profiling
	Slide 24: callgrind/kcachegrind: tracing & instruction-level
	Slide 25: Flame graphs
	Slide 26: Browser profilers
	Slide 27: Monitoring
	Slide 28: Soak testing

