Lecture 17/:
Dynamic Analysis and
Testing 3

CS 5150, Spring 2025

Administrative Reminders

 Sample Questions (for in-class exams) are available on Canvas.
Solutions will be shared early next week.

* Teams with external client: Remind your client to submit scores right
after meeting/presentation.

* Course staff will not send any reminders.

Lecture goals

* Leverage continuous integration to boost productivity by
"shifting left"

* Leverage dynamic analysis tools to find bugs

Continuous integration ("CI")

* Build and test whole systems regularly
* Discover issues earlier
Reduce integration pain through automation and isolation of issues
Test beyond single developer's resources
Eliminate reliance on developers' discipline
Continuously monitor readiness of code

* Applies to both development and release

* Continuous Build + test
e Continuous Delivery

CI/CD Terms

e Continuous Build (CB) integrates the latest code changes at head and runs
an automated build and test.

e Continuous Delivery (CD): a continuous assembling of release candidates,
followed by the promotion and testing of those candidates throughout a

series of environments—sometimes reaching production and sometimes
not.

* Release candidate (RC): A cohesive, deployable unit created by an
automated process, assembled of code, configuration, and other
dependencies that have passed the continuous build.

Read how Google manages Cl: https://xgwang.me/google-ci

https://xgwang.me/google-ci

Cl Decisions

e How to compose systems along release workflow
* Which tests to run when along release workflow

* Typical setup
* Pre-submit test suite gates all merges
* Compilation and fast tests relevant to affected code
* Post-submit test suite verifies subset of commits on trunk

* Contains larger, more integrated tests
* Blesses commits that pass as "green”

* Release promotion pipeline verifies candidates for release
e Contains even larger tests, and may require dedicated resources

e Mid-air Collision: Two changes touching different files causing a test to fail

Shift left

Heavyweight Lightweight
Edit/ Release RC promotions Final RC
Requirements Syst'em ATl R cle ,0 peiss compile/ Presubmit Post-submit candidate (Temp environments promotion
design development & release maintenance debug (RO) staging, etc.) (production)

Advantages of Lightweight: Fast Feedback Loops!

Poll: pre-submit vs. post-submit tests

PollEv.com/cs5150sp25

Automation, speed, & infrastructure

 Builds, tests, and deployment must be automated and reliable
 |deally completely reproducible

* Most steps must be fast to avoid impeding productivity
e Cache build products
e Skip unaffected tests
e Parallelize & invest in compute resources

* Benefits from tooling

* Integration with version control and code review
* Pre-merge and pre-release gates
» "Last-known-good" branch (new work should branch from here, not trunk)
* Bisect breakages
* Log all results
e Automatically rerun flaky tests

Multi-system Cl

* Without monorepo, need to assemble system from several
asynchronously-versioned repositories

 Large integration tests can't check every revision/combination

* Objective: identify "configurations" (revision combinations) suitable
for promotion (larger-scale testing, release)

Dynamic analysis

Common dynamic analysis tools

* Coverage

* Debuggers

* Memory checkers
* Sanitizers

e Profilers

Fuzz testing

e Give program random input, look for crashes, assertion violations

* Increased in popularity in 2010s; very effective at finding security
vulnerabilities

* Can be enhanced with coverage feedback

e Use genetic algorithms, neural networks to construct input that exercises
particular branches

What is a performance bug?

Avoid premature optimization!
* Does not meet deadlines / satisfy SLA

* Responsiveness, smoothness do not meet requirements

e 100 ms: GUI
e 15-30 ms: Animation (30-60 fps)
* 10 ms: MIDI, VR

* Unexpected slowdown for certain inputs / DoS vulnerability
* Performance regression (gradual and acute degradation)

e Performance variability across platforms

e Sub-optimal throughput for HPC

Performance testing challenges

* How much room for improvement is there?

 Amdahl's [aw: Limits to speedup from parallelization, local optimization
* Roofline analysis: Do you expect to be limited by bandwidth or compute?

* |s slowdown localized, dispersed, or emergent?

* Getting reliable measurements is difficult

* Inconsistency, load dependency, JIT compilation, non-representative datasets,
intrusive tooling

* Average case vs. worst case, tail metrics
* Tension between latency and bandwidth

Latency vs. throughput

e Latency: Duration between a single trigger and the system's response

e "Tail latency" (e.g., 95th percentile under a specified load) is more important
than average

* Throughput: Time it takes to process a fixed amount of work
e Often a function of workload
* Typically throughput increases with workload size up to a saturation point

* Reduce overhead with batching
* Typically at expense of latency

Amdahl's Law

* Speedup: S=T before/ T after

* |dentify portion p of runtime cost amenable to optimization
e T before=p*T+ (1-p)*T

* Let s be speedup of optimization on this portion

 Example: s = 10 for parallelizing on a 10-core machine
e Often interested in limitass - oo

o T after=p*T/s+(1-p)*T
*S(s)=1/(1-p+p/s)

Amdahl's Law implications

Speedup

20

18

16

14

12

10

Amdahl's Law

—

S g S
——

Parallel portion
50%
75%
—— 90%
—— 95%

< © © N <
(<] N '] = N
- N n o

-

Number of processors

2048

4096

8192

16384

32768

65536

CC BY-SA Daniels220 @ English Wikipedia

Poll: PollEv.com/cs5150sp25

You use a text search application to look for all occurrences of a
keyword in all the files of a large source code repository.

Using a single core, half of the time is spent reading files and looking
for the keyword, and half the time is spent formatting and printing a
sorted summary of the results to the console.

What is the maximum speedup that could be achieved by distributing
the work across multiple cores/nodes?

Profiling

* How can we estimate p? * Profiling techniques

* Where should our optimization * Sampling: Periodically interrupt
efforts be focused? process and examine stack trace

* Low overhead
* Incomplete data
* Tracing: Record whenever a
function is called or returns
* High overhead
* Complete function counts
* Timing may be distorted
* |nstruction-level: Estimate cost of
each statement
* Requires CPU model

callgrind/kcachegrind:
tracing & instruction-level

2 /cachegrind.out.24457 [keachegrind] - KCachegrind
File View Go Settings Help

Hj B \(;; 67@ @ ?Jj]W«I—» Q,” Instruetion jl (No Grouping) j

e —

QFontPrivate::load
| Types ICaIIers I Source | | Call Graph |

Cost Type Cum Self Short Formula =
E134.18 %
Read Access B34 07(_10.00 Dr
Write Access ~ E=128 591000 Dw
L1 Instr. Miss [1.74]0.01 Hmr
L1 Read Miss BE—13.85C0.01 Dimr

E=134.25 %
L1 Write Miss EER66.66C10.00 Dimw °
L2 Instr. Miss [42210.04 [2mr QF ontPrivate::engineF orScript
L2 Read Miss F] 7.58[10.01 D2mr —B35.26 %

L2 Write Miss E=351.5410.00 D2mw
L1 Miss Sum EF13.51C30.01 Lim= Hmr+Dimr +D1m_|
L2 Miss Sum E_J11.14010.02 L2m= [2mr + D2mr + D2m _

i P

hexa_value

E131.02 %

PS Unicode_Value

XftListFonts
.56 %

E=—r—==

Caller Map | CallMap | Assembler

‘cachegrlnd out.24457 [1] - Total Instruction Cost: 458 122 709

Flame graphs

Flame Graph

IIHII

_———===g
_===="98 --—

https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

Browser profilers

400 ms 800 ms 1200 ms 1600 ms 2000 ms

HINIRRR NN HORDOND 11 NIRENIRRTNNDENNEEE N END INl I EEENE N = I IRRRNNN D NN NI}
L] L] _INNENEN

| max 60 B ’—‘ M— | avg
min

435 ms 1440 ms 1445 ms 1450 ms 1455 ms 1460 ms 1465 ms
vc/g (gtm.js:29) n.event.add/r.handle (mozorg-resp-bundle.d70f8ec42799.js:2) < (...
jc (gtm.js:24) n.event.dispatch (mozorg-resp-bundle.d70f8ec42799.js:2) g/this...
Vb (gtm.js:22) n.even... init/< (tabzilla.js:593) m (lin...
a.push (gtm.js:83) Styles Tabzilla.open (tabzilla.js: 195) Gecko
cc (gtm.js:22) n.fn[d] (mozorg-resp-bundle.d70f8ec... .animate (mozorg-resp-bun... n.fn[b] (mozorg-...

Sb (gtm.js:76) n.access (mozorg-resp-bundle.d701f8e... .queue (mozorg-resp-bundl... .rigger (mozorg...
Mf (gtm.js:76) n.fn[d}/< (mozorg-resp-bundle.d70f8... n.prototype.each (mozorg-... n.prototype.each...
Lf/< (gtm.js:76) .css (mozorg-resp-bundle.d70f8ec427each (mozorg-resp-bundle... .each (mozorg-re...
$b (gtm.js:61) n.cssHooks[b].get (mozorg-resp-bund... .queue/< (mozorg-resp-bun... .rigger/< (mozo...
We (gtm.js:61) Styles Graphics .queue... .dequeue(mozorg... n.event.trigger ...
Xe.prototype.res... .makeA... .animate/g (mozo... n.event.special....
La(gt... Ka.pro... s (moz... Ic(mozorg-resp-... Gecko ¢ (moz...
aa (gt... jc(mo... n.fxt.. n.even...
Gb (mo... n.Even...

Monitoring

* To detect degradation and catch regressions, need to log and monitor
performance metrics
e Can measure duration of tests in Cl, but benefits from unloaded servers

* For services, also need to monitor performance in production
* Network conditions, load are dynamic

* With scalable microservice architectures, counterintuitive bottlenecks may
appear

» Scaling the wrong components can remove beneficial backpressure

Soak testing

* Tests often execute for less time than a production system

* Many production systems never turn off (e.g., embedded controllers)

 Some defects (e.g. memory leaks, fragmentation) are innocuous for short
runs

» Soak testing: Subject system to significant load for extended period of
time (days, months, years)
* Be sure to log key performance metrics (cycle time, memory usage)

* Not particularly compatible with a rapid Cl pipeline
* Still good to run periodically to catch issues sooner

	Slide 1: Lecture 17: Dynamic Analysis and Testing 3
	Slide 2: Administrative Reminders
	Slide 3: Lecture goals
	Slide 4: Continuous integration ("CI")
	Slide 5: CI/CD Terms
	Slide 6: CI Decisions
	Slide 7: Shift left
	Slide 8: Poll: pre-submit vs. post-submit tests
	Slide 9: Automation, speed, & infrastructure
	Slide 10: Multi-system CI
	Slide 11: Dynamic analysis
	Slide 12: Common dynamic analysis tools
	Slide 14: Fuzz testing
	Slide 15: What is a performance bug?
	Slide 17: Performance testing challenges
	Slide 18: Latency vs. throughput
	Slide 20: Amdahl's Law
	Slide 21: Amdahl's Law implications
	Slide 22: Poll: PollEv.com/cs5150sp25
	Slide 23: Profiling
	Slide 24: callgrind/kcachegrind: tracing & instruction-level
	Slide 25: Flame graphs
	Slide 26: Browser profilers
	Slide 27: Monitoring
	Slide 28: Soak testing

