Lecture 17/:
Dynamic Analysis and
Testing 3

CS 5150, Spring 2025




Administrative Reminders

 Sample Questions (for in-class exams) are available on Canvas.
Solutions will be shared early next week.

* Teams with external client: Remind your client to submit scores right
after meeting/presentation.

* Course staff will not send any reminders.



Lecture goals

* Leverage continuous integration to boost productivity by
"shifting left"

* Leverage dynamic analysis tools to find bugs



Continuous integration ("CI")

* Build and test whole systems regularly
* Discover issues earlier
Reduce integration pain through automation and isolation of issues
Test beyond single developer's resources
Eliminate reliance on developers' discipline
Continuously monitor readiness of code

* Applies to both development and release

* Continuous Build + test
e Continuous Delivery



CI/CD Terms

e Continuous Build (CB) integrates the latest code changes at head and runs
an automated build and test.

e Continuous Delivery (CD): a continuous assembling of release candidates,
followed by the promotion and testing of those candidates throughout a

series of environments—sometimes reaching production and sometimes
not.

* Release candidate (RC): A cohesive, deployable unit created by an
automated process, assembled of code, configuration, and other
dependencies that have passed the continuous build.

Read how Google manages Cl: https://xgwang.me/google-ci



https://xgwang.me/google-ci

Cl Decisions

e How to compose systems along release workflow
* Which tests to run when along release workflow

* Typical setup
* Pre-submit test suite gates all merges
* Compilation and fast tests relevant to affected code
* Post-submit test suite verifies subset of commits on trunk

* Contains larger, more integrated tests
* Blesses commits that pass as "green”

* Release promotion pipeline verifies candidates for release
e Contains even larger tests, and may require dedicated resources

e Mid-air Collision: Two changes touching different files causing a test to fail



Shift left
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Edit/ Release RC promotions Final RC
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Advantages of Lightweight: Fast Feedback Loops!



Poll: pre-submit vs. post-submit tests

PollEv.com/cs5150sp25



Automation, speed, & infrastructure

 Builds, tests, and deployment must be automated and reliable
 |deally completely reproducible

* Most steps must be fast to avoid impeding productivity
e Cache build products
e Skip unaffected tests
e Parallelize & invest in compute resources

* Benefits from tooling

* Integration with version control and code review
* Pre-merge and pre-release gates
» "Last-known-good" branch (new work should branch from here, not trunk)
* Bisect breakages
* Log all results
e Automatically rerun flaky tests



Multi-system Cl

* Without monorepo, need to assemble system from several
asynchronously-versioned repositories

 Large integration tests can't check every revision/combination

* Objective: identify "configurations" (revision combinations) suitable
for promotion (larger-scale testing, release)



Dynamic analysis



Common dynamic analysis tools

* Coverage

* Debuggers

* Memory checkers
* Sanitizers

e Profilers



Fuzz testing

e Give program random input, look for crashes, assertion violations

* Increased in popularity in 2010s; very effective at finding security
vulnerabilities

* Can be enhanced with coverage feedback

e Use genetic algorithms, neural networks to construct input that exercises
particular branches



What is a performance bug?

Avoid premature optimization!
* Does not meet deadlines / satisfy SLA

* Responsiveness, smoothness do not meet requirements

e 100 ms: GUI
e 15-30 ms: Animation (30-60 fps)
* 10 ms: MIDI, VR

* Unexpected slowdown for certain inputs / DoS vulnerability
* Performance regression (gradual and acute degradation)

e Performance variability across platforms

e Sub-optimal throughput for HPC



Performance testing challenges

* How much room for improvement is there?

 Amdahl's [aw: Limits to speedup from parallelization, local optimization
* Roofline analysis: Do you expect to be limited by bandwidth or compute?

* |s slowdown localized, dispersed, or emergent?

* Getting reliable measurements is difficult

* Inconsistency, load dependency, JIT compilation, non-representative datasets,
intrusive tooling

* Average case vs. worst case, tail metrics
* Tension between latency and bandwidth



Latency vs. throughput

e Latency: Duration between a single trigger and the system's response

e "Tail latency" (e.g., 95th percentile under a specified load) is more important
than average

* Throughput: Time it takes to process a fixed amount of work
e Often a function of workload
* Typically throughput increases with workload size up to a saturation point

* Reduce overhead with batching
* Typically at expense of latency



Amdahl's Law

* Speedup: S=T before/ T after

* |dentify portion p of runtime cost amenable to optimization
e T before=p*T+ (1-p)*T

* Let s be speedup of optimization on this portion

 Example: s = 10 for parallelizing on a 10-core machine
e Often interested in limitass - oo

o T after=p*T/s+(1-p)*T
*S(s)=1/(1-p+p/s)



Amdahl's Law implications
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Poll: PollEv.com/cs5150sp25

You use a text search application to look for all occurrences of a
keyword in all the files of a large source code repository.

Using a single core, half of the time is spent reading files and looking
for the keyword, and half the time is spent formatting and printing a
sorted summary of the results to the console.

What is the maximum speedup that could be achieved by distributing
the work across multiple cores/nodes?



Profiling

* How can we estimate p? * Profiling techniques

* Where should our optimization * Sampling: Periodically interrupt
efforts be focused? process and examine stack trace

* Low overhead
* Incomplete data
* Tracing: Record whenever a
function is called or returns
* High overhead
* Complete function counts
* Timing may be distorted
* |nstruction-level: Estimate cost of
each statement
* Requires CPU model



callgrind/kcachegrind:
tracing & instruction-level
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Flame graphs

Flame Graph
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https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html



https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html

Browser profilers
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Monitoring

* To detect degradation and catch regressions, need to log and monitor
performance metrics
e Can measure duration of tests in Cl, but benefits from unloaded servers

* For services, also need to monitor performance in production
* Network conditions, load are dynamic

* With scalable microservice architectures, counterintuitive bottlenecks may
appear

» Scaling the wrong components can remove beneficial backpressure



Soak testing

* Tests often execute for less time than a production system

* Many production systems never turn off (e.g., embedded controllers)

 Some defects (e.g. memory leaks, fragmentation) are innocuous for short
runs

» Soak testing: Subject system to significant load for extended period of
time (days, months, years)
* Be sure to log key performance metrics (cycle time, memory usage)

* Not particularly compatible with a rapid Cl pipeline
* Still good to run periodically to catch issues sooner
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